Probabilistic graphical models: distributed inference and learning models with small feedback vertex sets
نویسنده
چکیده
In undirected graphical models, each node represents a random variable while the set of edges specifies the conditional independencies of the underlying distribution. When the random variables are jointly Gaussian, the models are called Gaussian graphical models (GGMs) or Gauss Markov random fields. In this thesis, we address several important problems in the study of GGMs. The first problem is to perform inference or sampling when the graph structure and model parameters are given. For inference in graphs with cycles, loopy belief propagation (LBP) is a purely distributed algorithm, but it gives inaccurate variance estimates in general and often diverges or has slow convergence. Previously, the hybrid feedback message passing (FMP) algorithm was developed to enhance the convergence and accuracy, where a special protocol is used among the nodes in a pseudo-FVS (an FVS, or feedback vertex set, is a set of nodes whose removal breaks all cycles) while standard LBP is run on the subgraph excluding the pseudo-FVS. In this thesis, we develop recursive FMP, a purely distributed extension of FMP where all nodes use the same integrated message-passing protocol. In addition, we introduce the subgraph perturbation sampling algorithm, which makes use of any pre-existing tractable inference algorithm for a subgraph by perturbing this algorithm so as to yield asymptotically exact samples for the intended distribution. We study the stationary version where a single fixed subgraph is used in all iterations, as well as the non-stationary version where tractable
منابع مشابه
Thesis Proposal Parallel Learning and Inference in Probabilistic Graphical Models
Probabilistic graphical models are one of the most influential and widely used techniques in machine learning. Powered by exponential gains in processor technology, graphical models have been successfully applied to a wide range of increasingly large and complex real-world problems. However, recent developments in computer architecture, large-scale computing, and data-storage have shifted the f...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملThesis Proposal Distributed Algorithms for Probabilistic Inference and Learning
Probabilistic inference and learning problems arise naturally in distributed systems such as sensor networks, teams of mobile robots, and recommendation systems. In these systems, the data resides at multiple distributed locations, and the network nodes need to collaborate, in order to perform the inference or learning task. This thesis has three thrusts. First, we propose distributed implement...
متن کاملProbabilistic inference in graphical models
Jordan and Weiss: Probabilistic inference in graphical models 1 INTRODUCTION A " graphical model " is a type of probabilistic network that has roots in several different framework provides a clean mathematical formalism that has made it possible to understand the relationships among a wide variety of network-based approaches to computation, and in particular to understand many neural network al...
متن کاملTowards Bayesian Deep Learning: A Survey
While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014